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Abstract

This paper generalizes the Diamond-Mortensen-Pissarides (DMP) model by incorporat-

ing ambiguity preferences. Our analytically tractable model preserves most of the compara-

tive statics results in the DMP model. Ambiguity-averse workers believe that lower match-

specific productivity levels are more likely realized, lowering their reservation wage. This

belief makes them more likely to accept a contract from firms, reducing unemployment.

We quantify unemployment attributable to these ambiguity preferences, namely ambigu-

ous unemployment. We show that unemployment could have increased if both workers and

firms became ambiguity-neutral. This ambiguous unemployment is countercyclical and

can reach 19 percent of actual unemployment in the United States. Our model shows that

ambiguity preferences can explain why the strong correlation between unemployment and

volatility shocks to a productivity distribution is weakened in slumps.
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1 Introduction

Prior literature assumes a common knowledge about a productivity distribution (Rogerson

et al., 2005), yet this assumption is far from realistic. Workers and firms inside a model

(economists construct) make decisions based on a specified productivity distribution, creat-

ing at least two sources of uncertainties. First, workers and firms are uncertain about which

alternative model (e.g., the distribution function) should be used to make decisions. Since

the true model is unknown, another uncertainty from model misspecification arises: the

underlying model they use to make decision is potentially misspecified.

This paper constructs a model that allows us to investigate and quantify the impacts

of these ambiguity preferences on labor market outcomes. The conditional mean of a

productivity distribution above a reservation productivity threshold is important in deter-

mining expected profits, which affect decisions pertaining to the creation of vacancies and

thus unemployment. Nevertheless, the underlying distribution function of productivity and

thus the corresponding conditional mean are unknown, and we know little about how an

aversion to this ambiguity and a fear about model misspecification affect the behaviours

of workers and firms during a job search process. This paper purposes to (i) construct a

search-theoretical model featuring ambiguity preferences, (ii) uncover the major mecha-

nisms through which ambiguity preferences affect labor market outcomes, (iii) quantify

unemployment attributable to these ambiguity preferences, and (iv) resolve the puzzle con-

cerning the relationships between unemployment and volatility shocks to a productivity

distribution.

This paper contributes to the literature on search-theoretical models. It develops an an-

alytically tractable version of the Diamond-Mortensen-Pissarides (DMP) model featuring

the ambiguity preferences of workers and firms (Hansen and Sargent, 2008).1 While this

literature often assumes ambiguity-neutral, we show that the DMP model is a special case

of our model in which workers and firms are ambiguity-neutral. Our generalization allows

us to uncover mechanisms through which ambiguity preferences affect important macroe-

conomic variables such as unemployment. We analytically show that our model preserves

most (if not all) of the intuitive comparative statics results in the DMP model. As known,

the DMP model, serving as a canonical search-theoretical model, can be easily extended

to incorporate other labor market features such as on-the-job searches (Dolado et al., 2009;

Postel-Vinay and Turon, 2014), firing costs (Postel-Vinay and Turon, 2014; Vindigni et al.,

2014), job referral (Calvó-Armengol and Zenou, 2005; Galenianos, 2014), heterogeneity

in sectors (Acemoglu, 2001; Albrecht et al., 2018), discrimination (Sasaki, 1999; Rosén,

2003), human capital accumulation (Cairo and Cajner, 2018), etc. Hence, our extension of

1We will compare our model with the one under Knightian uncertainty as in Nishimura and Ozaki (2004) in
Online Appendix A.
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Figure 1: Unemployment Rate and Uncertainty in the United States

Notes: The solid line shows the annual unemployment rate in the United States. The dashed line, dashed-dot line,
and dotted-line show the standard deviation of total factor productivity for manufacturing establishments aged at
least 2, 25, and 38 years, respectively. The shaped years represent the recession. Data on the standard deviations
is obtained from Bloom et al. (2018).

the DMP model complements these broad literatures.

Our analytical result shows that the impacts of ambiguity preferences on unemployment

could be different. Workers with stronger ambiguity aversion tend to believe that lower pro-

ductivity levels are more likely to be realized. This belief reduces an unemployed worker’s

outside option value and thus a reservation wage; hence, they are more likely to accept a

contract from firms. Meanwhile, the lower reservation wage requires firms to compensate

employees less, thereby reducing wages. The reduction in this compensation increases ex-

pected profits, encouraging the creation of vacancies. Both the decrease in the reservation

wage and the increase in the supplies of vacancies reduce unemployment. Whereas con-

ventional wisdom suggests that complete information on the labor market helps job seekers

get rid of unemployment, our result reveals that the ambiguity aversion of worker in fact

reduces unemployment.

In contrast, firms with stronger ambiguity aversion formulate a belief of lower expected

profits, discouraging their creation of vacancies. This belief simultaneously reduces the

reservation productivity threshold to hire a worker. While the former effect increases unem-

ployment, the latter effect shortens an average unemployment spell. These two compelling

forces make it uncertain how a firm’s ambiguity aversion affects unemployment.

Another contribution of this paper is to quantify unemployment attributable to ambigu-

ity preferences, namely ambiguous unemployment. Our quantitative analysis indicates that

unemployment would have increased if both workers and firms became ambiguity-neutral
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Table 1: Correlation Coefficients between the Unemployment Rate and TFP Volatility

Overall Recession Non-Recession
S.D. of TFP (Age: 2+ Years) 03998 0.3378 0.4094

S.D. of TFP (Age: 25+ Years) 0.1714 0.0345 0.2077
S.D. of TFP (Age: 38+ Years) 0.3004 0.1317 0.3671

Notes: This table shows the correlation coefficients between the annual unemployment rate and the one-year lagged
standard deviation of total factor productivity for the corresponding manufacturing firms in the United States during
1972-2010. Data on the standard deviations is obtained from Bloom et al. (2018), and the unemployment rate is
obtained from the Federal Bank of St. Louis.

in reality. This ambiguous unemployment is countercyclical, and its size can be consider-

able: it can reach 19 percent of actual unemployment in the United States. Furthermore,

the implications of this analysis lead to an interesting policy dilemma in propagating labor

market information. We find that the removal of the firm’s ambiguity reduces unemploy-

ment, but the impact is negligible. In contrast, if the worker’s ambiguity is removed, the

effect is substantial but unemployment increases.

This paper also complements a series of influential papers that study the relationship

between unemployment and productivity uncertainties (Bloom et al., 2007; Bloom, 2009;

Schaal, 2017; Bloom et al., 2018). Figure 1 plots the unemployment rate and the standard

deviation of the total factor productivity (TFP) in the United States during 1972-2010. Ap-

parently, these two variables are large in slumps. Table 1 reports the correlation coefficients

between the unemployment rate and three different measures of one-year lagged standard

deviation of the TFP.

Two points deserve mentioning. First, all the correlation coefficients are positive;

volatility shocks are positively correlated with unemployment rates. This result coheres

with Schaal (2017), which shows that U.S. unemployment fluctuations could be explained

in large part by the volatility shocks to the TFP. Second, these coefficients are weaker dur-

ing periods of recession regardless of the volatility measure. For example, using the firms

aged 25 and 38 years more, the correlation coefficients during recession years are about

one-fifth and one-third of their counterparts during non-recession years, respectively. No

prior literature explains this phenomenon.

This paper provides a rationale behind the phenomenon. Our quantitative analysis re-

veals that a larger standard deviation of the productivity distribution could catalyze ambigu-

ous unemployment. Since both ambiguous unemployment and the standard deviation of

the productivity distribution are procyclical, ambiguity preferences reduce unemployment

more in slumps than in booms, weakening the strong correlation between unemployment

and volatility shocks in recession years. This paper contributes to this literature by linking
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ambiguity preferences to the relationship between unemployment and the volatility of a

productivity distribution. This linkage, though important in understanding unemployment

fluctuations, has not been addressed in previous formal models.

This paper is organized as follows. Section 2 presents a basic model setting. Section 3

characterizes a steady-state equilibrium and explores the impacts of ambiguity preferences

on the labor market. Comparative statics are analytically shown in Section 4. Section 5

quantifies and explores the properties of ambiguous unemployment and shows that ambi-

guity unemployment could explain why the strong correlation between unemployment and

volatility shocks is weakened in recession years. Section 6 concludes this paper.

2 The Basic Model

This section constructs a search-theoretical model that allows both workers and vacancies

to be ambiguity-averse.2 In contrast to the literature, we do not assume that workers and

vacancies know the data-generating process of an economy. They utilize an approximat-

ing model that best describes the data-generating process. Meanwhile, they fear possible

misspecification of this approximating model. Consequently, they do not make decisions

simply according to the rational expectation paradigm. Instead, they incorporate a penalty

function into their value functions to diverge from the approximating model; they distort the

approximating model so that the fear of model misspecification can be considered. In addi-

tion to the decisions on job searchs and vacancy creations as in the conventional search and

matching model, the model of choice is endogenized so that the decisions during job/worker

search processes are made to maximize the value function under the worst-case scenario.

Following the convention in the literature on ambiguity preferences, we call the optimal

model, which is chosen by an ambiguity-averse agent, a distorted model.

Consider a discrete time economy with a fixed labor force, without loss of generality

normalized to unity. Each worker has an infinite horizon and is either employed or unem-

ployed.3 A vacancy is either filled or unfilled. The measure of the vacancy is endogenized.

Both workers and vacancies are ambiguity-averse, know the degree of ambiguity aversion

of each other, and share an identical discounted factor β ≡ 1/(1 + r), where r is a real

2To shed light on the impacts of ambiguity preferences on other labor market outcomes, a search and matching
model is constructed at its simplest. Readers who are interested in the model with other elements such as learning
are referred to Moscarini (2005), Gonzalez and Shi (2010), and Papageorgiou (2014) for a search and matching
model with learning and Epstein and Schneider (2008) for the ambiguity preferences with learning.

3The model assumes that no decision on labor supply, either the number of working hours or labor force
participation, is made. This simplification is standard (Mortensen and Pissarides, 1994; Shimer, 2005; Hall, 2005;
Hagedorn and Manovskii, 2008; Hall and Milgrom, 2008; Fujita and Ramey, 2012; Michaillat, 2012), and is in
line with empirical regularities: cyclical variations in total working hours (unemployment) basically arise from
changes in the amount of employment but not changes in working hours per worker (labor force participation)
(Shimer, 2010).
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interest rate.

An unemployed worker receives unemployment benefit b and meets an unfilled vacancy

via a matching technologyM(u, v), where u and v are the numbers of unemployed workers

and unfilled vacancies, respectively. The matching technology M(u, v) gives the number

of pairwise meetings per period. Assume that M(u, v) is homogeneous of degree one and

increasing in each argument so that M(u, v)/v = M(u/v, 1). We denote the rate at which

an unfilled vacancy meets a job seeker q(θ) ≡ M(u, v)/v, where θ ≡ v/u is the market

tightness. It follows that q(θ) is a decreasing function and that the rate at which a job

seeker meets an unfilled vacancy M(u, v)/u = θq(θ) is an increasing function of θ, as

in Pissarides (2000). We also make standard Inada-type assumptions on M(u, v) so that

limθ→0 q(θ) =∞, limθ→∞ q(θ) = 0, limθ→0 θq(θ) = 0, and limθ→∞ θq(θ) =∞.

When an unemployed worker and an unfilled vacancy meet, a match-specific produc-

tivity level δ is realized. We assume δ follows a cumulative distribution function F (δ)

over R+, and the corresponding probability density function is denoted by f(δ). Given δ,

they bargain on the wage. The unemployed worker will reject the job offer if the expected

lifetime utility that would result from remaining in the status of an unemployed job seeker

exceeds that of employment with productivity δ.

In contrast to the literature, we do not assume that job seekers have full knowledge of

the productivity distribution F (δ). Instead, these job seekers are not confident that F (δ) is

the “true” distribution. As shown in Hansen and Sargent (2008), an ambiguity-averse agent

will replace the density function f(δ) with an alternative density f̂(δ) to account for his

fear of losses arising from model misspecification. Following Hansen and Sargent (2008),

this class of problem can be formulated as choosing the likelihood ratio m(δ) ≡ f̂(δ)/f(δ)

for all δ to optimize a value function that is a function of an ambiguity preference α ≤
0 and a measure of the distance between the two distributions. We follow Hansen and

Sargent (2008) to use Eδm(δ) lnm(δ), known as relative entropy between f(δ) and f̂(δ),

to measure the Kullback Leibler distance between two distributions. In this model, this

relative entropy measures the discrepancy between the approximating and the distorted

model. Denote JE(δ) and JU as the value functions of employment and unemployment,

respectively. The value function of an unemployed worker JU must satisfy the following

function:

JU = min
m(x)

b+ βEx
[
θq(θ)

(
m(x) max{JE(x), JU} − 1

α
m(x) lnm(x)

)
+ (1− θq(θ))JU

]
subject to

∫
m(x)dF (x) = 1, (1)

wherem(δ) ≡ f̂(δ)/f(δ) is a likelihood ratio. An unemployed worker chooses a likelihood

ratio to minimize the value function, and the decisions during a job search process are made
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to maximize this minimized value function. We can also interpret the choice of m(δ) as

follows. Given the approximating model f(δ), an unemployed worker chooses the distorted

model f̂(δ) to minimize the value function. The decisions are then made to maximize the

value function under the worst-case scenario in which the probability density function is

f̂(δ).

α ≤ 0 is a penalty parameter for relative entropy, which captures the degree of a

worker’s ambiguity aversion. When α = 0, workers are said to be ambiguity-neutral.

The more workers fear model misspecification, the lower α becomes.

The optimal likelihood ratio is given by4

f̂(δ)

f(δ)
=

eαmax{JE(δ),JU}∫∞
0 eαmax{JE(x),JU}dF (x)

. (2)

We will show that the partial derivative ∂JE(δ)/∂δ is positive. Hence, the optimal like-

lihood ratio decreases with δ. Intuitively, an ambiguity-averse job seeker will choose the

“distorted distribution” that assigns a lower probability to a higher match-specific produc-

tivity level. In the limiting case where α approaches zero from below, equation (2) implies

that f̂(δ) = f(δ), and thus

JU = b+ βEx
(
θq(θ) max{JE(x), JU}+ (1− θq(θ))JU

)
,

which is the case in the absence of the fear of model misspecification. When a worker

does not worry about model misspecification, his belief of the probability density function

is identical to the approximating one. Hence, the value function of unemployment in the

conventional search and matching model is a special case of ours when α equals zero.

An employed worker with a match-specific productivity level δ receives a bargained

wage w(δ) and, at the end of each period, faces a separation shock at a rate of λ. When the

shock arrives, the worker becomes unemployed. The discounted present values of employ-

ment JE(δ) can be written as follows:

JE(δ) = w(δ) + β

(
λJU + (1− λ)JE(δ)

)
. (3)

A filled vacancy generates a production value δ, pays a worker w(δ), and faces a separation

shock at a rate of λ. When the shock arrives, a filled vacancy becomes unfilled. Denote

JF (δ) and JV as asset values of a filled and an unfilled vacancy, respectively. The asset

4Proof is given in Appendix 7.1.
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value of a filled vacancy JF (δ) can be written as follows:

JF (δ) = δ − w(δ) + β

(
λJV + (1− λ)JF (δ)

)
. (4)

An unfilled vacancy pays maintenance cost c > 0 and faces a probability q(θ) of being

filled. When an unfilled vacancy meets an unemployed worker, it will agree to form a

match with the worker if the match-specific productivity level is high enough such that

JF (δ) ≥ JV . An unfilled vacancy, being ambiguity-averse, maximizes the minimum ex-

pected outcome. To do so, a vacancy chooses mv(δ) ≡ f̂v(δ)/f(δ), a likelihood ratio, to

maximize the minimum expected outcome, where f̂v(δ) is a probability density function

of the distorted model chosen by an unfilled vacancy. Hence, the asset value of an unfilled

vacancy JV can be written as

JV = min
mv(x)

−c+ βEx
[
q(θ)

(
mv(x) max{JF (x), JV } − 1

αv
mv(x) lnmv(x)

)
+ (1− q(θ))JV

]
subject to

∫
mv(x)dF (x) = 1, (5)

where αv ≤ 0 is the degree of ambiguity aversion of a vacancy. This problem can be

solved in a similar way as the minimization problem facing unemployed workers (2). The

corresponding likelihood ratio is given by

f̂v(δ)

f(δ)
=

eαv max{JF (δ),JV }∫∞
0 eαv max{JF (x),JV }dF (x)

. (6)

The ambiguity preferences of workers and vacancies share the same notion in the optimal

likelihood ratio: more ambiguity-averse agents tend to believe that a lower productivity

level is more likely to be realized. When an unemployed worker and an unfilled worker

meet, a match-specific productivity level δ is realized, and they bargain on the wage to

maximize the generalized Nash product as follows:

w(δ) ≡ arg max(JE(δ)− JU )η(JF (δ)− JV )1−η,

where η ∈ (0, 1) is the bargaining power of workers.5 Understanding the ambiguity prefer-

ences is important in wage determination because the degree of ambiguity aversion affects

the bargained wage through the outside option values of workers and vacancies (i.e., JU and

JV ). For simplicity, we assume that the ambiguity preferences of workers and vacancies

5Maximizing this generalized Nash product is only one of the wage determination methods. So long as the
wage determination method returns an employed worker a fraction of total matching rent, the ambiguity aversion of
a worker can affect labor market outcomes. Therefore, the implications of this model is not driven by the proposed
wage determination mechanism.
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are common information.6 Simple algebra gives the following sharing rule:

JE(δ)− JU = η

(
JE(δ)− JU + JF (δ)− JV

)
. (7)

Intuitively, a match surplus of a worker is a fraction η of the total match surplus. The

assumption of free entry and exit is made; hence, rent is exhausted, and thus

JV = 0. (8)

Denote δRu as the reservation productivity level, below which an unemployed worker will

not accept any job offer. Since an unemployed worker will accept the job offer only if

JE(δ) ≥ JU , JE(δRu ) = JU . A reservation productivity threshold for an unfilled vacancy

δRv is defined in a similar way; therefore, JF (δRv ) = JV . Using the sharing rule (7), one can

easily show that the reservation productivity levels for a worker and a vacancy are identical.

Hereafter, denote the reservation productivity level as δR. Both JE(δ) and JF (δ) strictly

increases with δ; therefore, the δR is unique. Hence, unemployed workers and unfilled

vacancies, when they meet, accept the offer for all δ ≥ δR. Using equations (3), (4), (7),

and (8), the wage equation is derived as follows:

w(δ) = ηδ + (1− η)βrJU . (9)

Hence, a wage is a fraction of production value plus a fraction of the worker’s outside

option value. Using equations (3) and (9), a reservation wage is given by

w(δR) = δR = βrJU . (10)

Hence, the reservation wage w(δR), the reservation productivity level δR, and the worker’s

outside option value are identical. If the realized productivity level δ exceeds δR, the bar-

gained wage is given by

w(δ) = (1− η)δR + ηδ. (11)

A worker is compensated with a fraction of the reservation productivity level δR plus a

fraction of the production value.

A steady-state unemployment rate is determined by equating flows out and into unem-

6In reality, interviews enable vacancies to understand workers’ match-specific productivity levels and attitudes
toward ambiguity. For example, an expected salary on a resume could reveal an unemployed worker’s belief of
his/her expected productivity and/or ambiguity preference. Another example is an aptitude test, which could reveal
the ambiguity preferences of workers. Readers who are interested in the model in which agents have asymmetric
information on the degree of ambiguity aversion are referred to Ahn (2007).
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ployment and is given by

u =
λ

λ+ [1− F (δR)]θq(θ)
. (12)

A steady-state unemployment rate strictly increases with the reservation productivity level

δR because a higher δR reduces a job offer acceptance rate and thus lengthens an unem-

ployment spell.

3 Characterization of a Steady-State Equilibrium

This section characterizes a steady-state equilibrium and explores the impacts of ambiguity

preferences on labor market outcomes. First, this section shows that our generalization

of the DMP model is highly analytically tractable. Second, it uncovers the mechanisms

through which ambiguity preferences affect the labor market in this stylized search and

matching model. The empirical significance of these mechanisms will be presented in

Section 5.

Definition 1. A steady-state equilibrium is defined as {f̂(δ), f̂v(δ), δR, w(δ), u, θ, JE(δ),

JU , JF (δ), JV } such that equations (1), (3) to (5), (7), (8), (10), and (12) are satisfied for

all δ ≥ δR, and equations (2) and (6) are satisfied for all δ ∈ R+.

Using equations (1) and (2), the value function of an unemployed worker is written by

βrJU = b+
βθq(θ)

α
ln

(
F (δR) +

∫ ∞
δR

eα(J
E(x)−JU )dF (x)

)
. (13)

Using equations (5) and (6), the value function of an unfilled vacancy is given by

βrJV = −c+
βq(θ)

αv
ln

(
F (δR) +

∫ ∞
δR

eαv(J
F (x)−JV )dF (x)

)
. (14)

Notably, JU strictly increases with θ, and JV strictly decreases with θ, as commonly seen in

the literature on the search and matching model. A rise in market tightness increases a tran-

sition rate from unemployment to employment but decreases the rate from being unfilled

to being filled, thereby improving but deteriorating the value functions of an unemployed

worker and an unfilled vacancy, respectively. When α = 0 and αv = 0, the preceding

equations reduce to

βrJU = b+ βθq(θ)

∫ ∞
δR

(JE(x)− JU )dF (x) and

βrJV = −c+ βq(θ)

∫ ∞
δR

(JF (x)− JV )dF (x).
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They are the value functions of unemployed workers and unfilled vacancies in the model

in which workers and vacancies are ambiguity-neutral.7 Thus, the fundamental setup in

the literature on the search equilibrium model is a special case of the present model, when

both α and αv equal zero. Interestingly, the four value functions (i.e., JE(δ), JF (δ), JU ,

and JV ) preserve linearity only if both workers and vacancies are ambiguity-neutral (i.e.,

α and αv are zero), making the search equilibrium model analytically tractable. We show

that these value functions are all nonlinear with one another under ambiguity aversion.

This section contributes to the literature by showing that even if these value functions are

nonlinear under ambiguity aversion, the model preserves its analytical tractability.

Substituting equations (2), (3), (9), and (10) into equation (13), simple algebra gives

δR = b+
βθq(θ)

α
ln

(
F (δR) +

∫ ∞
δR

e
αη(1+r)
r+λ

(x−δR)dF (x)

)
. (15)

Similarly, substituting equations (4), (6), (9), and (10) into equation (14) yields

c =
βq(θ)

αv
ln

(
F (δR) +

∫ ∞
δR

e
αv(1−η)(1+r)

r+λ
(x−δR)dF (x)

)
. (16)

The derivations of equations (15) and (16) are shown in Appendix 7.2. The steady-state

equilibrium is characterized by the intersection of the above two loci, equations (15) and

(16). These two loci are shown in the δR-θ plane in Figure 2. Locus (15), along which

the workers’ outside option value equals the reservation productivity level, slopes upward:

a higher θ increases the R.H.S. of equation (15); thus, δR has to increase. When θ goes

to zero, δR approaches b. Intuitively, an increase in market tightness raises a transition

rate from unemployment to employment, inducing the outside option value of unemployed

workers to rise. As a result, a higher reservation productivity level is required for unem-

ployed workers to accept a job offer.8

The locus (16), along which an unfilled vacancy makes zero profit, slopes downward.

In contrast to unemployed workers, a rise in market tightness reduces the probability that

vacancies will be filled, thereby lowering JV . Hence, a reservation productivity level falls

so as to raise the transition rate of being filled to maintain the zero profit. When θ tends to

7When α = 0 and αv = 0, F (δR)+
∫∞
δR
eα(J

E(x)−JU )dF (x) = 1 and F (δR)+
∫∞
δR
eαv(J

F (x)−JV )dF (x) = 1.
Applying L’Hopitals’ Rule to equations (13) and (14) yields the result.

8Denote Υ(δR) ≡ F (δR) +
∫∞
δR
e
αη(1+r)
r+λ (x−δR)dF (x) ≤ 1. Applying the Leibniz integral rule to differentiate

ln Υ(δR) with respective to δR, we have

∂ ln Υ(δR)

∂δR
= − 1

Υ(δR)

αη(1 + r)

r + λ

∫ ∞
δR

e
αη(1+r)
r+λ (x−δR)dF (x) > 0.

Hence, δR and θ are positively associated in the locus (15). Following a similar procedure, one could verify that
δR and θ are negatively associated in the locus (16).
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δR

θ 

Figure 2: Equilibrium Determination

zero, δR approaches infinity. By the continuity of the two functions, the intermediate value

theorem ensures that the two loci intersect. Since both loci are strictly monotone, they only

intersect once at δR∗ ∈ (b,∞) and θ∗ ∈ (0,∞). The following proposition summarizes

the findings.

Proposition 1. For all α ≤ 0 and αv ≤ 0, there exists a unique steady-state equilibrium,

which is characterized by equations (15) and (16). In the equilibrium, δR∗ ∈ (b,∞) and

θ∗ ∈ (0,∞).

While the literature shows the existence of a unique steady-state equilibrium in the DMP

model in the absence of ambiguity aversion, Proposition 1 extends the result to the model

with ambiguity preferences: it shows the existence of a unique steady-state equilibrium in

the model for all ambiguity preferences α ≤ 0 and αv ≤ 0.

Proposition 2. In a steady-state equilibrium, (i) θ∗ strictly decreases with α and strictly in-

creases with αv, (ii) δR∗ strictly increases with both α and αv, (iii) w∗(δ) strictly increases

with both α and αv for all δ ≥ δR∗, and (iv) an unemployment rate strictly increases with

α.

Proof. See Appendix 7.3.

Figure 3 demonstrates the impacts of the fall in α (the left one) and αv (the right one)

on θ∗ and δR∗, respectively. When workers become more ambiguity-averse (i.e., a lower

value of α), the locus (15) rotates clockwise and the zero profit condition (16) is unaffected.

A new steady-state equilibrium occurs at the intersection of two loci, with a lower value of

δR∗ and a larger value of θ∗ than the old ones.
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Figure 3: The Effect of Stronger Ambiguity Aversion on the Reservation Productivity Threshold

0 0
θ θ 

δRδR

b b

Notes: The left (right) panel shows the effect of stronger ambiguity aversion of workers (vacancies).

Intuitively, an ambiguity-averse worker makes a decision based on a distorted model

in which a lower likelihood is assigned to a higher match-specific productivity level. With

a higher degree of ambiguity aversion, the worker inclines to a more “distorted” model.

Therefore, the average ex ante match-specific productivity level is lower, which reduces

the outside option value of unemployed workers. Consequently, it requires a lower match-

specific productivity level to accept a job offer, causing the reservation productivity level to

decline.

From the perspective of vacancy, the reduction in the worker’s outside option value

means lower wage levels are required to compensate workers with productivity δ for all

δ ≥ δR∗, inducing their flow profits and thus raising their expected match surplus. This

increase in the expected match surplus incents more supplies of vacancies until the creation

of vacancies exhausts the rent in the equilibrium, thereby increasing θ∗. In a steady-state

equilibrium, both the fall in δR∗ and the rise in θ∗ increase the unemployment rate u∗ and

shorten an unemployment spell.

Similarly, vacancies with stronger ambiguity aversion (a lower value of αv) think that

the average match-specific productivity level and thus expected profits are lower. Hence,

the fall in the expected profits reduces the supplies of vacancies, and thus market tightness

θ∗ declines. The fall in market tightness reduces the transition rate from unemployment to

employment; therefore, the worker’s outside option value and the reservation productivity

level δR∗ drop. Consequently, w∗(δ) declines for all δ ≥ δR∗. While the reduction in

the θ∗ lengthens an unemployment spell, the fall in δR∗ increases the job acceptance rate

1− F (δR∗). Therefore, it is uncertain whether a stronger ambiguity aversion of vacancies

increases an unemployment rate. This result can be seen by totally differentiating a steady-
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state unemployment rate u∗ with respect to αv as follows:

du∗

dαv
=

∂u∗

∂δR∗︸ ︷︷ ︸
+

dδR∗

dαv︸ ︷︷ ︸
+

+
∂u∗

∂θ∗︸︷︷︸
−

dθ∗

dαv︸︷︷︸
+

.

Importantly, the mechanisms, through which ambiguity preferences affect the labor

market, are robust to other wage-setting methods. This paper follows the literature and uses

bargained wages that maximize generalized Nash products. Consider an extreme case in

which wages are completely independent of the worker’s reservation wage and are exoge-

nously given. Given these exogenous wage levels, vacancies with higher degrees of am-

biguity aversion believe that lower productivity levels are more likely to be realized. This

belief shrinks their expected profit and thus lowers their reservation productivity threshold,

reducing the supplies of vacancies. Therefore, ambiguity aversion does affect other labor

market variables even though wages are determined not by maximizing the generalized

Nash products.

Next, we explore the limiting properties of α and αv. According to the optimal likeli-

hood ratio (2), for all δ > δR∗ we have

f̂(δ)

f(δ)
=

eαJ
E(δ)∫ δR∗

0 eαJUdF (x) +
∫∞
δR∗ eαJ

E(x)dF (x)

=
1∫ δR∗

0 eα(JU−JE(δ))dF (x) +
∫∞
δR∗ eα(J

E(x)−JE(δ))dF (x)
.

When α approaches negative infinity, the R.H.S. goes to zero because JU − JE(δ) < 0

for all δ > δR∗. Therefore, the optimal likelihood ratio f̂(δ) is zero for all δ > δR∗ and

is f(δ)/F (δR∗) for all δ ∈ [0, δR∗]. In other words, if workers are sufficiently ambiguity-

averse, they will choose to believe that it is impossible to have any match-specific pro-

ductivity exceeding the reservation level. If this is the case, the outside option value of

workers leaves with unemployment benefit b. Hence, δR∗ will approach b: the locus (15) is

a horizontal line δR∗ = b, as shown in Figure 3. Equivalently, one can show that when α

approaches negative infinity, the second term in equation (15) vanishes, and hence, δR∗ is

equal to unemployment benefit b. The labor market persists: unemployed workers accept

all the job offers as long as the match-specific productivity exceeds b.

Interestingly, the labor market collapses when vacancies are sufficiently ambiguity-

averse. Applying a similar argument to the optimal likelihood ratio (6), one can show

that when αv approaches negative infinity, the optimal likelihood ratio f̂v(δ) is zero for all

δ > δR∗ and is fv(δ)/F (δR∗) for all δ ∈ [0, δR∗]. In other words, vacancies tend to believe

that the likelihood of a match-specific productivity exceeding the reservation level is zero,

driving the supply of vacancies and thus market tightness to zero. Equivalently, one can

13



show that when αv approaches negative infinity, the R.H.S. in equation (16) tends to zero.

To maintain the zero profit condition (16), θ∗ goes to zero. In this case, the labor market

collapses.

Proposition 3. If α → −∞, the labor market persists: the reservation productivity level

δR∗ equals unemployment benefit b. If αv → −∞, the labor market collapses: there exists

no vacancies.

Next, we introduce a new measure of unemployment, namely ambiguous unemploy-

ment, and investigate its properties. This ambiguous unemployment is defined as the unem-

ployment driven solely by ambiguity preferences. Mathematically, ũ(α, αv) ≡ u(α, αv)−
u(0, 0), where u(α, αv) is the actual unemployment rate under ambiguity preferences α and

αv, and u(0, 0) is the unemployment rate if both workers and vacancies became ambiguity-

neutral in reality. We can also define the ambiguous unemployment of workers as ũW (α, αv) ≡
u(α, αv)−u(0, αv), which captures the change in the unemployment rate because of work-

ers’ ambiguity preferences. Similarly, the ambiguous unemployment of vacancies is de-

fined as ũV (α, αv) ≡ u(α, αv)− u(α, 0).

The ambiguous unemployment of workers can only be negative. According to Proposi-

tion 2, an unemployment rate rises if workers are less ambiguity-averse. Hence, u(α, αv) <

u(0, αv) for all α < 0, and thus the ambiguous unemployment of workers ũW (α, αv) is

negative. A negative ambiguous unemployment of workers means the workers’ ambigu-

ity preferences reduce the actual unemployment rate. In other words, if workers became

ambiguity-neutral in reality, the unemployment rate would have been larger. Whereas con-

ventional wisdom suggests that complete information on the labor market helps job seekers

get rid of unemployment, our result reveals that ambiguity aversion towards the productiv-

ity distribution indeed reduces the unemployment rate.

Nevertheless, the ambiguous unemployment of vacancies could be any real number. As

discussed above, if vacancies become ambiguity-neutral, both θ∗ and the δR∗ would have

been larger. The job finding rate increases, but the job acceptance rate decreases. If the

former effect is dominant, u(α, αv) < u(α, 0). Otherwise, u(α, αv) > u(α, 0). Therefore,

it is uncertain whether the ambiguous unemployment of vacancies ũV (α, αv) is positive

or negative. Because of this indetermination, the ambiguous unemployment ũ(α, αv) can

also be any real number. We will demonstrate the empirical significance of ambiguous

unemployment in Section 5.

Before closing this section, it is important to highlight that job search behaviors are

not observationally equivalent under ambiguity aversion and risk aversion. Whereas this

section shows that market tightness increases with the degree of the ambiguity aversion of

workers, we show in Online Appendix B that a higher degree of risk aversion could lower

market tightness. Also, a higher degree of workers’ ambiguity aversion reduces unemploy-
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ment, but the unemployment effect of a higher degree of risk aversion is uncertain.

4 Comparative Statics

The previous section generalizes the DMP model to allow the ambiguity aversion of both

workers and vacancies. The DMP model provides generally intuitive comparative stat-

ics results that describe the labor market well. This section shows that our generalization

preserves most (if not all) of the comparative statics results. In particular, this section

investigates how production technology, maintenance costs, unemployment benefits, and

matching technology affect other labor market outcomes.

Advances in Production Technology. We first explore the impacts of advances in

production technology to the labor market. Consider a permanent productivity shock to the

economy so that a productivity distribution F is transformed into a new one G, where the

productivity distribution G first-order stochastically dominates F (i.e., G �FOSD F ).

With the advance in productivity technology, the match-specific productivity level is,

on average, higher. Unemployed workers are willing to wait longer for a higher realized

productivity level, causing the reservation productivity level to rise. In other words, the

outside option value of unemployed workers increases. It is clear from the wage equation

(11) that filled vacancies are required to pay more to compensate for the increased outside

option value. Therefore, wage levels climb up for all δ exceeding the reservation level.

The impact of the increase in productivity on market tightness is indeterminate. Such an

improvement increases the average match-specific productivity level and thus the expected

profits. This primary effect induces more supplies of vacancies and thus increases market

tightness. Meanwhile, as explained above, such an improvement increases the reservation

productivity level, making it harder for unemployed workers to accept a job offer. This

general equilibrium effect depresses the supplies of vacancies and thus lowers market tight-

ness. Since we are uncertain about the magnitude of the two forces, the total effect of the

advance in productivity distribution on market tightness is indeterminate. As market tight-

ness is one of the key variables in determining a steady-state unemployment rate, the effect

on an unemployment rate is also indeterminate. The following proposition summarizes our

analytical finding.

Proposition 4. If F andG are two productivity distributions whereG �FOSD F ,wG(δ) >

wF (δ) for all δ ≥ δRG.

Proof. See Appendix 7.4.

Increases in Unemployment Benefit and Vacancy Maintenance Cost. We explore

the impact of increased unemployment benefit on the labor market. A rise in unemployment
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benefit increases the outside option value of unemployed worker. As a result, unemployed

workers become more “picky” and require a higher realized productivity level to accept

a job offer, thereby increasing the reservation productivity level δR∗. With the increased

outside option value, filled vacancies are required to pay higher wage levels to employed

workers for all δ ≥ δR∗, depressing profits. With lower expected profits, the zero-profits

condition drives some unfilled vacancies out of the labor market in a steady-state equilib-

rium. Consequently, the supplies of vacancies and thus market tightness θ∗ drop. While the

rise in δR∗ increases the job acceptance rate, the fall in θ∗ reduces the likelihood that unem-

ployed workers meet unfilled vacancies. These two effects lead to a higher unemployment

rate in a steady-state equilibrium.

Next, we examine the effects of increased vacancy maintenance cost on the labor mar-

ket. The increased vacancy maintenance cost makes it more costly to create an unfilled

vacancy. In other words, a rise in this maintenance cost requires higher expected flow

profits to maintain zero profit, discouraging unfilled vacancies to stay in the labor market.

Hence, market tightness drops. The decrease in the supplies of unfilled vacancies makes it

harder for unemployed workers to meet unfilled vacancies. As a result, the outside option

value of workers declines, causing the reservation productivity level and thus wages to fall.

Totally differentiating a steady-state unemployment rate with respect to c, we have

du∗

dc
=

∂u∗

∂δR∗︸ ︷︷ ︸
+

dδR∗

dc︸ ︷︷ ︸
−

+
∂u∗

∂θ∗︸︷︷︸
−

dθ∗

dc︸︷︷︸
−

.

While the fall in θ∗ reduces the likelihood that unemployed workers meet vacancies, the

lower δR∗ makes unemployed workers less picky to job offers. Consequently, the impact of

increased maintenance cost on unemployment is indeterminate. Proposition 5 summarizes

the findings.

Proposition 5. A rise in unemployment benefit increases wage levels w(δ) for all δ ≥ δR∗

and unemployment. A rise in maintenance cost reduces θ∗, δR∗, and w(δ) for all δ ≥ δR∗.

Proof. See Appendix 7.5.

Advances in Matching Technology. An improvement in matching technology in-

creases the matching rate between unemployed workers and unfilled vacancies. A higher

matching rate allows both of them to re-search another offer more easily if either side re-

jects a current offer. Consequently, they become more “picky” during the searching process,

driving up the reservation productivity level. Again, a natural consequence is that the wage

w(δ) increases for δ ≥ δR∗ in response to the increase in δR∗. However, the impact on

θ∗ is uncertain. On the one hand, the rise in a matching rate increases the outside option

value of vacancies, thereby providing incentives to create vacancies. On the other hand,
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the rise in wages reduces expected profits, depressing the supplies of vacancies. Hence,

we are uncertain about the effect of the advances in matching technology on θ∗ and thus a

steady-state unemployment rate. Interestingly, the advances in matching technology do not

necessarily imply a lower unemployment rate in a steady-state equilibrium. The following

proposition summarizes our finding.

Proposition 6. If q1(θ) > q2(θ) for all θ ∈ R++, δR∗1 > δR∗2 and thus w1(δ) > w2(δ) for

all δ ≥ δR∗1 in the equilibrium.

Proof. See Appendix 7.6.

We have shown analytically how variations in production technology, unemployment

benefits, maintenance costs, and matching technology affect the labor market. While our

model is shown in Section 3 to nest the canonical one with ambiguity neutrality (i.e., α = 0

and αv = 0), this section generalizes the comparative statics results so that all the proposi-

tions in this section hold for all α ≤ 0 and αv ≤ 0.

5 Ambiguous Unemployment

This section quantifies unemployment attributable to ambiguity preferences (i.e., ambigu-

ous unemployment). This analysis is informative for two reasons. First, while Section

3 uncovers the major mechanisms through which ambiguity preferences toward a match-

specific productivity distribution affect unemployment, this section measures the empirical

significance of these mechanisms. If ambiguity preferences substantially impact unemploy-

ment, it will be reasonable to suggest that ambiguity preferences, similar to risk preferences,

are important considerations in designing labor market policies. Second, this analysis al-

lows us to compare the sizes of the impacts between the ambiguity preferences of workers

and vacancies. And if one is sufficiently larger than the other, this section provides guidance

to policymakers to effectively allocate resources in propagating labor market information

to workers and firms.

This section uncovers the ambiguous unemployment ũ(α, αv) in the United States and

decomposes it into the ambiguous unemployments of workers (i.e., ũW (α, αv)) and va-

cancies (i.e., ũV (α, αv)). We follow the procedure in Appendix 8 to uncover ambiguous

unemployment except that we loop over steps 2 and 3 until α and αv converge to obtain

the detection error probabilities. We consider α = −0.168 and αv = −0.405, where the

detection error probability is about five percent or more.9

Next in line is the calibration of all the underlying parameters of steady-state unemploy-

ment (12). This unemployment rate is a function of a job separation rate λ and a job finding

9The five-percent detection error probability is also used in Croce et al. (2012).
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Figure 4: The Calibrated µ and σ
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Notes: The left and right panels show the calibrated µ and σ, respectively. The gray areas indicate recession years.

rate θq(θ)[1 − F (δR)]. Since we follow Zanetti (2011) to assume that δ ∼ lnN(µ, σ2) is

log-normally distributed, F (·) is a function of µ and σ. To uncover historical ambiguous

unemployment in the United States, we calibrate quarterly u, λ, δR, µ, and σ, with other

parameters being constant as in Table 2.

These quarterly parameters are calibrated as follows. First, we match u to the actual

quarterly unemployment rate provided from Shimer (2012). Second, the separation rates

λ are calibrated to the quarterly rate provided from Shimer (2012). Since Shimer (2012)

provides these rates from the first quarter of 1948 to the same quarter of 2007, we restrict

our analysis to this period. Third, given the actual unemployment rate and the separation

rate, the quarterly job finding rate is uniquely pinned down using steady-state unemploy-

ment (12). We calibrate δR, µ, and σ to ensure that θq(θ)[1− F (δR)] equals the calibrated

quarterly job finding rate. Thus, the two equilibrium conditions (15) and (16) are satisfied.

The calibrated µ and σ cohere with the literature. Figure 4 shows that as average pro-

ductivity levels tend to be lower in slumps, µ is lower in recession years. This figure illus-

trates that the calibrated σ is high in slumps, in line with the volatility shocks in recession

years documented in Schaal (2017) and Bloom et al. (2018).

Figure 5 demonstrates the counterfactual unemployment rates under ambiguity neutral-

ity. Subtracting these counterfactual unemployment rates from the corresponding actual

unemployment rates yields ambiguous unemployment. That is, ũ(α, αv) ≡ u(α, αv) −
u(0, 0). This figure indicates that u(0, 0), represented by the dash-dot line, always exceeds

the actual unemployment rate, shown by the solid line. This simulation exercise suggests

that ambiguous unemployment in the United States is negative in the past half-century,

meaning that the ambiguity preferences of workers and vacancies reduce the unemploy-
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ment rate. In other words, if both workers and vacancies became ambiguity-neutral in

reality, the unemployment rate would have been larger.

Next, we explore whether this negative ambiguous unemployment is attributable more

to workers’ or vacancies’ preferences. First, we simulate the counterfactual unemployment

rate when workers became ambiguity-neutral (i.e., u(0, αv)). Figure 5 shows that u(0, αv),

represented by the dot line, always exceeds the actual unemployment rate. This result

is expected because we show in Section 4 that the ambiguous unemployment of workers

is always negative (i.e., ũW (α, αv) ≡ u(α, αv) − u(0, αv) < 0.) Second, we simulate

u(α, 0) in Figure 5 as well. When comparing between u(α, αv) and u(α, 0), it is clear that

the ambiguous unemployment of vacancies ũV (α, αv) ≡ u(α, αv) − u(α, 0) is positive.

Probably because of the positive ambiguous unemployment of vacancies, the ambiguous

unemployment of workers ũW (α, αv) is slightly larger than the ambiguous unemployment

ũ(α, αv) in magnitude.

Three points are noteworthy. First, the impact of the ambiguity preference of vacancies

on unemployment is larger through the contact rate rather than the job acceptance rate.

A stronger ambiguity aversion reduces vacancies’ expected profit, reducing the supplies

of vacancies and thus increasing unemployment. Meanwhile, the lower expected profit

reduces the reservation productivity level δR∗, thereby increasing the acceptance rate and

thus decreasing unemployment. Our quantitative exercise suggests that the former effect,

which is a primary effect, dominates the latter one, explaining why the unemployment rate

is higher under the ambiguity aversion of vacancies.

Second, the impact of the worker’s ambiguity preference on unemployment is more

pronounced than that of the vacancies. Whereas the ambiguity aversion of workers sub-

stantially reduces unemployment via both the job contact rate (through θ) and the job ac-

ceptance rate (through δR), the ambiguity aversion of vacancies creates two compelling

forces on unemployment (as discussed in above). Hence, the effect of workers’ ambigu-

ity aversion on unemployment is much larger, explaining the remarkable ambiguous un-

employment of workers. This finding highlights the dilemma in allocating resources to

propagate labor market information. The removal of the firms’ ambiguity reduces unem-

ployment, but the impact is negligible. In contrast, if the workers’ ambiguity is removed,

the effect is substantial but unemployment increases.

Third, ambiguous unemployment is countercyclical: it is larger in slumps than in booms

and reaches its peaks during recession years. This ambiguous unemployment is close to

zero in expansion but can reach as high as 19 percent of the actual unemployment in reces-

sion years. This finding reveals that ambiguous unemployment can be significant: ambigu-

ous preferences can substantially distort the workers’ belief on a productivity distribution

and thus unemployment.

Next, we explore the key driving force for the countercyclical property of ambiguous
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Figure 6: The Effects of µ and σ on Unemployment
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Notes: The left (right) panel demonstrates the relationship between µ (σ) and unemployment. The solid and dash
lines demonstrate the corresponding relationship with ambiguity aversion and without ambiguity aversion,
respectively. Other variables are computed using their averages in the calibration exercise in Figure 5. Along the
horizontal axes, µ and σ vary from its minimum to its maximum in Figure 5.

unemployment. Recall from Figure 4 that the mean of the productivity distribution µ is

procyclical and its standard deviation σ is countercyclical. In what follows, we investigate

whether the countercyclical property of ambiguous unemployment is mainly driven from

the procyclicality of µ or the countercyclicality of σ.

To do so, we demonstrate the relationship between an unemployment rate and µ in

the left panel of Figure 6. In this exercise, µ varies from its minimum to its maximum

in the calibration exercise in Figure 5. θ, δR, and u are solved using the steady-state un-

employment (12) and the two equilibrium conditions (15) and (16). Other parameters are

computed using their averages in Figure 5. In addition to the unemployment rate under

ambiguity aversion, we also plot the counterfactual unemployment rate under ambiguity

neutrality. Hence, the vertical distance between the two lines captures ambiguous unem-

ployment. Using a similar procedure, the relationship between the unemployment rate and

the σ is established in the right panel of Figure 6.

Several points deserve discussion. First, ambiguous unemployment hardly reacts to

productivity shock. According to Figure 6, the two unemployment rates fall under pro-

ductivity shocks; the ambiguous unemployment rate is almost unaffected by productivity

shocks. Second, ambiguous unemployment is responsive to the volatility shock to a produc-

tivity distribution. According to Figure 6, the unemployment rate under ambiguity aversion

increases sharply with the standard deviation of the production distribution, consistent with

the literature. While Schaal (2017) finds that the volatility shocks to a productivity dis-

tribution can largely explain unemployment fluctuations, Bloom et al. (2018) shows that
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business cycles are mainly driven by volatility shocks. Strikingly, the counterfactual un-

employment rate is much more responsive to this volatility shock. Therefore, ambiguous

unemployment increases significantly with the standard deviation of a productivity distri-

bution, and the increase is more pronounced when the standard deviation is higher.

Second, the countercyclicality of ambiguous unemployment is attributable to the volatil-

ity shock to a productivity distribution in recession years. While Figure 5, Schaal (2017),

and Bloom et al. (2018) indicate that the standard deviation of a productivity distribution in-

creases in recession years, Figure 6 shows that ambiguous unemployment increases sharply

with this standard deviation. Hence, the countercyclicality of ambiguous unemployment

arises from the volatility shock to a productivity distribution in recession years.

As shown in Figures 4 and 6, Schaal (2017), and Bloom et al. (2018), the standard de-

viation of a productivity distribution and an unemployment rate are positively correlated.

Since the standard deviation of a productivity distribution increases in recession years, and

these volatility shocks catalyze ambiguous unemployment, the ambiguity preferences re-

duce unemployment rates more in slumps than in booms. These findings complement the

literature (Bloom, 2009; Schaal, 2017; Bloom et al., 2018) by explaining why the strong

correlation between this volatility shock and unemployment is weakened in recession (as

shown in Table 1).

Indeed, our findings and Epstein and Schneider (2008) share the same notion in the

impact of the ambiguity aversion: ambiguity-averse agents react more strongly to negative

shocks than positive shocks because they act as if they take a worst-case scenario. They tend

to assign a much higher likelihood to the lower productivity level in an economic downturn

because of the increased standard deviation during the same period. In other words, they

tend to pick the distorted model that departs more from the approximating model in reces-

sion than in expansion. So, the reservation wage would have increased more and market

tightness would have decreased more in slumps if workers and vacancies were ambiguity-

neutral. Consequently, this stronger volatility shock intensifies ambiguous unemployment

in slumps. In other words, the ambiguous preferences reduce the unemployment rate more

in slumps because of the stronger volatility shocks, thereby reducing the correlation be-

tween this volatility shock and unemployment in recession.

6 Conclusion

This paper constructs a search-theoretical model featuring ambiguity preferences, uncovers

the major mechanisms through which ambiguity preferences affect labor market outcomes,

quantifies the unemployment attributable to these ambiguity preferences, and resolves the

puzzle concerning the relationships between unemployment and volatility shocks to a pro-

ductivity distribution. It develops an analytically tractable version of the DMP model fea-
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turing workers and firms ambiguity preferences. We analytically show that our model pre-

serves most (if not all) of the intuitive comparative statics results in the DMP model, thereby

contributing to the broad literature that extends the DMP model to incorporate other labor

market features.

Our quantitative analysis contributes to the literature by quantifying ambiguous un-

employment and investigating its properties. First, our analysis finds that ambiguous un-

employment is negative, suggesting that the ambiguity preferences shrink unemployment.

In other words, unemployment would have increased if workers and vacancies became

ambiguity-neutral. Second, this ambiguous unemployment rate can be considerable. This

unemployment could reach 19 percent of the actual unemployment, calling attention to

this ambiguous unemployment. Third, our results point to a policy dilemma in allocating

resources in propagating labor market information. If a vacancies’ ambiguity toward a pro-

ductivity distribution is removed, unemployment falls, but the impact is negligible. The

removal of a workers’ ambiguity has a substantial impact but increases unemployment.

Fourth, ambiguous unemployment is found to be countercyclical. This unemployment

is close to zero in booms but reaches 19 percent of the actual unemployment in slumps.

Fifth, ambiguity preferences enhance our understanding of the relationship between unem-

ployment and volatility shocks to a productivity distribution. We find that these volatility

shocks catalyze ambiguous unemployment: ambiguity preferences reduce unemployment

more in slumps because of the stronger volatility shock during the same period, weakening

the correlation between unemployment and volatility shocks in recessions.

7 Appendix I: Proof

7.1 Proof of Equation (2)

To solve the minimization problem (1), we can write a Lagrangian function as follows.

L = b+βEx
[
θq(θ)

(
m(x) max{JE(x), JU} − 1

α
m(x) lnm(x)

)
+ (1− θq(θ))JU

]
+λ

[
1−
∫
m(x)dF (x)

]
.

The first order condition gives us

θq(θ)

[
max{JE(x), JU} − 1

α
− lnm(x)

α

]
− λ = 0.

Rearranging terms gives us

m(x) = eαmax{JE(x),JU}e
−1− αλ

θq(θ) .

23



Integrating both sides over R and rearranging terms give us∫
m(x)dF (x) =

∫
eαmax{JE(x),JU}dF (x)e

−1− αλ
θq(θ)

e
1+ αλ

θq(θ) =

∫
eαmax{JE(x),JU}dF (x).

Hence, we have

m(δ) =
eαmax{JE(δ),JU}∫

eαmax{JE(x),JU}dF (x)
.

7.2 Derivations of Equations (15) and (16)

Substituting the wage equation (9) in equation (3) yields

JE(δ) = (1− η)βrJU + ηδ + β

[
λJU + (1− λ)JE(δ)

]
.

Rearranging terms gives

JE(δ)− JU =
η(1 + r)

(r + λ)
(δ − δR)

Substituting this JE(δ)− JU into equation (13) yields equation (15). Equation (16) can be

derived in a similar way.

7.3 Proof of Proposition 2

Assume that δR ≥ b is finite. So, 0 < F (δR) ≤ 1. Define

B(α) ≡ F (δR) +

∫ ∞
δR

e
αη(1+r)
r+λ

(x−δR)dF (x)

Its first- and second-order partial derivative are given by

B′(α) =
η(1 + r)

r + λ

∫ ∞
δR

(x− δR)e
αη(1+r)
r+λ

(x−δR)dF (x)

and

B′′(α) =

[
η(1 + r)

r + λ

]2 ∫ ∞
δR

(x− δR)2e
αη(1+r)
r+λ

(x−δR)dF (x).

Next, we define

B̃(α) ≡ 1

α
lnB(α) > 0 for all finite α ≤ 0,
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where B̃(α) is the last term on the R.H.S. of equation (15). We will show that B̃′(α) > 0

for all α ≤ 0. The first- and the second-order partial derivatives of B̃(α) are given by

B̃′(α) =
1

α

(
− 1

α
lnB(α) +

B′(α)

B(α)

)
and

B̃′′(α) = − 2

α
B̃′(α) +

1

α

(
B′′(α)

B(α)
− B′(α)2

B(α)2

)
.

Lemma 1.
B′′(α)

B(α)
− B1(α)2

B(α)2
> 0

Proof. Define a function h(x, α) as

h(x, α) =

 1

e
αη(1+r)
r+λ

(x−δR)

if 0 ≤ x < δR

if x ≥ δR

Hence, B(α) =
∫∞
0 h(x, α)f(x)dx. For any α ≤ 0, we can define another function

g(x, α) ≡ h(x, α)

B(α)
f(x).

g(x, α) is positive because h(x, α) > 0 and B(α) > 0 for all α ≤ 0. Hence,
∫∞
0 g(x, α) =

1 and g(x, α) is a probability density function.

B′(α)

B(α)
=

1

B(α)

∫ ∞
0

∂h(x, α)

∂α
f(x)dx =

η(1 + r)

r + λ

∫ ∞
0

max{x− δR, 0}g(x, α)dx

B′′(α)

B(α)
=

1

B(α)

∫ ∞
0

∂2h(x, α)

∂α2
f(x)dx =

[
η(1 + r)

r + λ

]2 ∫ ∞
0

(
max{x−δR, 0}

)2

g(x, α)dx

Therefore,

B′′(α)

B(α)
−
(
B′(α)

B(α)

)2

=

[
η(1 + r)

r + λ

]2
V arx

(
max{x− δR, 0}

)
> 0 for all finite δR,

where the variance is evaluated with respect to the density function g(x, α).

Now, we are ready to show that B̃′(α) > 0 for allα ≤ 0. First, notice that limα→0 B̃(α) >

0 and limα→−∞ B̃(α) = 0.

Second, there exists no α0 ≤ 0 such that B̃′(α0) = 0 and B̃′′(α0) ≥ 0. Otherwise, it

contradicts to Lemma 1. Hence, if there exists α0 ≤ 0 such that B̃′(α0) = 0, B̃′′(α0) < 0.
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Third, there exists no α0 ≤ 0 such that B̃′(α0) = 0 and B̃′′(α0) < 0. Suppose not.

Then limα→0−
′̃B(α) < 0 because limα→0 B̃(α) > 0 and limα→−∞ B̃(α) = 0.

By L’Hopital’s rule, limα→0− B̃(α) = limα→0− B
′(α)/B(α). Hence, we can apply

the L’Hopital’s rule to evaluate limα→0− B̃
′(α). Hence, we have

lim
α→0−

B̃′(α) = lim
α→0−

[
−B̃′(α) +

B′′(α)

B(α)
−
(
B′(α)

B(α)

)2
]
,

and thus

lim
α→0−

B̃′(α) = lim
α→0−

1

2

[
B′′(α)

B(α)
−
(
B′(α)

B(α)

)2
]
> 0.

A contradiction arises. Therefore, there exists no α ≤ 0 such that B̃′(α) = 0. Since

limα→0 B̃(α) > 0 and limα→−∞ B̃(α) = 0, B̃′(α) > 0 for all α ≤ 0.

Therefore, the partial derivative of the R.H.S. of equation (15) with respect to α is

positive. A similar argument can be used to show that the partial derivative of the R.H.S. of

equation (16) with respect to αv is positive. Applying Cramer’s rule to equations (15) and

(16), (
− −
+ −

)(
dθ

dδR

)
=

(
−dαv
−dα

)

Define A ≡ det

(
− −
+ −

)
.

dθ

dαv
=

det

(
− −
0 −

)
A

> 0,
dδR

dαv
=

det

(
− −
+ 0

)
A

> 0,

dθ

dα
=

det

(
0 −
− −

)
A

< 0, and
dδR

dα
=

det

(
− 0

+ −

)
A

> 0

Using the wage equation (9), simple algebra gives

dw(δ)

dα
= (1− η)

dδR

dα
> 0, and

dw(δ)

dαv
= (1− η)

dδR

dαv
> 0.
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7.4 Proof of Proposition 4

G �FOSD F iff
∫
h(x)dG(x) ≤

∫
h(x)dF (x) for any non-increasing function h(x). For

any δR ∈ R+, we define two non-increasing functions:

h(x) =

{
e
αη(1+r)
r+λ

(x−δR), if δ > δR;

1, otherwise.
, h̃(x) =

{
e
αv(1−η)(1+r)

r+λ
(x−δR), if δ > δR;

1, otherwise.

Hence, equations (15) and (16) can be written as follows:

δR = b+
β

α
ln

(∫ ∞
0

h(x)dF (x)

)
c =

β

αv
ln

(∫ ∞
0

h̃(x)dF (x)

)
Define a surjective function A(δR; a) : R+ × R → R, with ∂A(δR; a)/∂a > 0. Notice

that for any distribution G, there exist aG and ãG that satisfy the following equations.∫ ∞
0

h(x)dG(x) +A(δRF ; aG) =

∫ ∞
0

h(x)dF (x)∫ ∞
0

h̃(x)dG(x) +A(δRF ; ãG) =

∫ ∞
0

h̃(x)dF (x)

where δRF is the reservation productivity under the distribution F . Notice that aG and ãG
are unique due the monotonicity of A(δR; a) with respect to a. Without loss of generality,

we set aF = ãF = 0 so that A(δR; 0) = 0. For any G �FOSD F where G 6= F , either

aG > 0 or ãG > 0 (or both). Consider a distribution G0 �FOSD F with aG0 = ãG0

slightly above zero. Thus, the preceding two equations can be written as follows:

δR = b+
β

α
ln

(∫ ∞
0

h(x)dF (x)−A(δR; aG0)

)
c =

β

αv
ln

(∫ ∞
0

h̃(x)dF (x)−A(δR; ãG0)

)
To investigate the impact of changing the distribution from F to G0, it is equivalent to

investigate the impact of changing a from 0 to aG0 = ãG0 . Hence, we apply Crammer’s

rule to the above two equations,(
− −
+ −

)(
dθ

dδR

)
=

(
−da
−da

)
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dδR

da
=

det

(
− −
+ −

)
A

> 0,
dθ

da
=

det

(
− −
− −

)
A

Thus, δRG > δRF ifG �FOSD F . Hence,wG(δ) = (1−η)δRG+ηδ > (1−η)δRF+ηδ = wF (δ)

for all δ ≥ δRG. Similarly, applying Crammer’s rule to the cases (aG > 0, ãG = 0) and

(aG = 0, ãG > 0) gives the same result.

7.5 Proof of Proposition 5

Applying Cramer’s rule to equations (15) and (16),(
− −
+ −

)(
dθ

dδR

)
=

(
+dc

−db

)
(17)

Denote A = det

(
− −
+ −

)
> 0.

dθ

dc
=

det

(
+ −
0 −

)
A

< 0,
dδR

dc
=

det

(
− +

+ 0

)
A

< 0 (18)

dθ

db
=

det

(
0 −
− −

)
A

< 0,
dδR

db
=

det

(
− 0

+ −

)
A

> 0 (19)

7.6 Proof of Proposition 6

If q1 = ϕq where ϕ ∈ (0, 1), then p1 = ϕp. With new matching technology, equations (15)

and (16) are written as

δR = b+
β

α
ln

(
F (δR) +

∫ ∞
δR

e
αϕθq(θ)η(1+r)

r+λ
(x−δR)dF (x)

)
(20)

c =
β

αv
ln

(
F (δR) +

∫ ∞
δR

e
αvϕq(θ)(1−η)(1+r)

r+λ
(x−δR)dF (x)

)
(21)

Applying Crammer’s rule to the above two equations,(
− −
+ −

)(
dθ

dδR

)
=

(
−dϕ
−dϕ

)
(22)
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dδR

dϕ
=

det

(
− −
+ −

)
A

> 0,
dθ

dϕ
=

det

(
− −
− −

)
A

(23)

Thus, dw(δ)/dϕ > 0 for all δ ≥ δR.

8 Appendix II: Calibration

This section illustrates the procedure to quantify ambiguous unemployment. Since am-

biguous unemployment is a counterfactual measure, we quantify it using the following

procedure:

1. Calibrate parameters to match an actual unemployment rate under ambiguity neutral-

ity.

2. Compute detection error probabilities using the parameters calibrated in step 1.

3. Choose entropy penalty parameters at the perceived level of the detection error prob-

ability.

4. Calibrate parameters to match an actual unemployment rate using the entropy penalty

parameters calibrated in step 3.

5. Simulate the counterfactual unemployment rate at α = 0 and αv = 0 using the

parameters calibrated in step 4.

6. Compute the difference between the counterfactual unemployment rate (from step 5)

and the actual unemployment rate.

The difference between the two unemployment rates in step 6 captures ambiguous unem-

ployment (i.e., ũ(α, αv)). Step 1 is discussed in Subsection 8.1. We calibrate entropy

penalty parameters (i.e., α and αv) following steps 2 and 3 in Subsection 8.2. We will

demonstrate how to compute ambiguous unemployment following the rest of the procedure

in Subsection 8.3.

8.1 Calibrating the DMP Model Under Ambiguity Neutrality

This subsection follows step 1 to calibrate parameters under ambiguity neutrality (i.e., α =

αv = 0). In particular, our calibration exercise matches the model to the U.S. postwar

economy (i.e., 1948-2007).

First, we follow Michaillat (2012) to specify a matching function asM(u, v) = auγv1−γ ,

in line with the empirical evidence of Petrongolo and Pissarides (2001). Another reason to

adopt a Cobb-Douglas matching function is to ensure that the elasticity of q(θ) with re-

spect to θ is constant. In this way, we can calibrate this elasticity γ to a worker’s bargaining
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power η so that the Hosios condition holds. Following Shimer (2005), the worker’s bar-

gaining power η is set to be 0.72. We follow Hagedorn and Manovskii (2008) to set market

tightness θ to be 0.634.

We match the model period to be a quarter. We set λ = 0.0344, which is the average

of the separation rate data provided by Shimer (2012). In Shimer (2005), the quarterly job

finding rate is 1.35, implying that the matching technology a = 1.35/0.6341−0.72 = 1.534.

The quarterly unemployment rate data from 1948 to the first quarter of 2007 are obtained

from the Bureau of Labor Statistics, and its average is about 0.056. We follow Shimer

(2005) to set a quarterly interest rate to be 0.012.

Next in line is the productivity distribution. This exercise follows Zanetti (2011) to

assume that a match-specific productivity distribution is log-normally distributed. This

calibration strategy coheres with the empirical evidence of Lydall (1968) and Heckman and

Sedlacek (1985) in that a wage distribution has a unique interior mode with a log-normal-

like skewness. Hence, δ ∼ lnN(µ, σ2), where the mean µ and the standard derivation σ

are two parameters we calibrate.

Calibrating unemployment benefit and vacancy posting cost are challenging. Shimer

(2005) sets the unemployment benefit to be 0.4. However, Hagedorn and Manovskii (2008)

argue that this value is too low as it does not include forgone leisure or home production.

They calibrate their model to match the cyclical properties of wages; nevertheless, their re-

sult b = 0.955 is implausibly large. Mortensen and Nagypal (2007) argue that if b = 0.955,

the flow surplus of the employed will be too low. Hence, we follow Hall and Milgrom

(2008) and Pissarides (2009) to set b = 0.71. This value is larger than 0.4 because it in-

cludes the consumption difference between states of employment and unemployment. In

Hagedorn and Manovskii (2008), the costs of posting a vacancy include a non-capital hiring

cost of 0.110 and an idle capital cost 0.474, amounting to 0.584. Therefore, c is set to be

0.584.

We calibrate the mean µ and the standard deviation σ of a productivity distribution

together with the equilibrium θ∗, δR∗, and u∗. Given µ and σ, the three variables are

pinned down by the three equilibrium conditions (12), (15), and (16). Hence, we solve

θ∗ = 0.634, u∗ = 0.056, and the three equilibrium conditions to obtain (µ, σ, u, θ, δR).

Table 2 summarizes the results.

8.2 Calibrating Entropy Penalty Parameters

This subsection executes steps 2 and 3 to calibrate the two entropy penalty parameters α

and αv. We closely follow the calibration strategy suggested by Hansen and Sargent (2008).

First, we map α and αv to detection error probabilities for discriminating between an ap-

proximating model and a chosen worst model associated with the corresponding parameter
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Table 2: Endogenous Variables for Calibration

Panel A: Endogenous Variables for Calibration
Variable Value Description

θ 0.634 Market Tightness
δR 1.662 Reservation Productivity Level
u 0.056 Unemployment Rate

Panel B: Calibrated Parameters
Parameter Value Description Target

µ 0.4935 Mean of a Productivity Distribution θ = 0.634
σ 0.0822 Standard Deviation u = 0.056

Parameter Value Description Source
r 0.012 Quarterly Interest Rate Shimer (2005)
λ 0.0344 Separation Rate Shimer (2012)
b 0.71 Unemployment Benefit Hall and Milgrom (2008)
η 0.72 Worker’s Bargaining Power Shimer (2005)
a 1.534 Technology of a Matching Function Shimer (2005)
c 0.584 Cost of Posting a Vacancy Hagedorn and Manovskii (2008)

values. To compute the detection error probabilities, other parameter values are obtained

from Table 2. Second, the detection error probability is used to determine α and αv.

We first brief the procedure for estimating the detection error probability.10 A likeli-

hood ratio test is used to compute this detection error probability. Consider two alternative

models: model A and model B are an approximating model and an distorted model, respec-

tively. Denote Lj as the likelihood function of a corresponding model j ∈ {A,B}. The

test suggests that a worker will pick model A iff LA > LB; otherwise, model B is selected.

Given that model j generates the data, a detection error probability is Pr(Lj < L−j |j).

Intuitively, it is a probability of choosing a wrong model −j when the underlying model is

j. Set the prior probability of model A and B as one-half. A detection error probability is

given by

Pr(α) =
1

2

(
Pr(LA < LB|A) + Pr(LA > LB|B)

)
.

In this calibration exercise, we generate 10, 000 samples for each α. In each sample, 200

observations of wage are generated from the approximated model δ ∼ lnN(µ, σ). µ =

0.4935 and σ = 0.0822 are acquired from Table 2, and the distorted model is described

in equation (2). Since the model period is about a week, the 200 observations of wage are

equivalent to the data of four years. Likelihood functions LiA and LiB are computed for

each sample. With N(µ, σ2) and w(δ) = (1 − η)δR + ηδ, the likelihood function of the

10Readers who are interested in the details are referred to Chapters 9 and 10 in Hansen and Sargent (2008).
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Figure 7: The left (right) panel shows the detection error probability as a function of ambiguity aversion of
workers (vacancies).

approximated model is given by

LiA =
1

1− F (δR)

(
200∏
t=1

η

(wit − (1− η)δR)
√

2πσ
e−

(ln(wit−(1−η)δR)−ln η−µ)
2

2σ2

)
,

where F (·) is a cumulative distribution function of lnN(µ, σ2), and wit is the t-th observa-

tion of wage in a sample i. LiB can be calculated in a similar way based on the conditional

density given by equation (2), in which f̂(δ|δ > δR) = f̂(δ)/(1−F̂ (δR)). Noting that F̂ (·)
is a cumulative distribution function of f̂(·), and F̂ (δR) = eαJ

U
F (δR)/

∫∞
0 eαmax{JE(x),JU}dx.

Pr(Lj < L−j |j) equals
∑N

i=1 I(Lij < Li−j)/N , where N = 10, 000 is the number of sam-

ples and I(·) is an indicator function to count the number of samples in which the worker

picks a wrong model.

In our model, workers and vacancies are ambiguity-averse; hence, we compute the

detection error probabilities p(α) and p(αv). When the entropy penalty parameter is zero,

the corresponding approximating model and distorted model are identical. Since the two

models cannot be distinguished, the detection error probability will be 0.5. As the entropy

penalty parameter falls, the two models are more distinguishable and the detection error

probability declines.

Two points deserve mentioning. First, the detection error probability p(α) may depend

on αv, and analogously p(αv) may depend on α. Figure 7 indicates such a dependence

exists but is weak. Second, there could be multiple pairs of α and αv to yield the same

detection error probability. For each detection error probability, we take the average of the

α that yields the same detection error probability for all αv.

Although αv is unbounded, p(αv) decays sharply to zero. Hence, we confine the range

of αv by setting its lower bound to −1.1 because the detection error probabilities of vacan-
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cies are close enough to zero for all α as αv = −1.1. Here, we implicitly presume that the

detection error probability schedules in Figure 7 are common knowledge to workers and

vacancies so that workers know that αv is likely to fall in the interval [−1.1, 0]. We follow

this procedure to obtain all the detection error probabilities corresponding to α, and we can

acquire all the detection error probabilities corresponding to αv using a similar procedure.

Here, α can be interpreted as a worker’s concern about the robustness of the approx-

imating model with the detection error probability p(α). According to Figure 7, workers

with α = −0.18 are those who pick the distorted model such that the probability of a mis-

specification error is about five percent. If a reasonable preference for robustness is the

rule that functions well for alternative models with the detection error probabilities of five

percent or more, α = −0.18 will be the choice of the parameter. Similarly, vacancies with

αv = −0.46 will pick the distorted model to have the likelihood of a misspecification error

equal to five percent.

8.3 Measuring Ambiguous Unemployment

This subsection follows the rest of the procedure to uncover ambiguous unemployment.

Notice that plugging the calibrated parameters in Table 2 into the DMP model with ambi-

guity neutrality will yield the unemployment rate equal to the actual unemployment rate.

Hence, we follow step 4 to calibrate the DMP model with ambiguity preferences (i.e.,

α = −0.18 and αv = −0.46) to the U.S. economy using the a similar procedure as dis-

cussed in Subsection 8.1. That is, u(−0.18,−0.46) = 0.056.

Using the new set of calibrated parameters, we can simulate the counterfactual unem-

ployment rate in the model with ambiguity neutrality, giving us u(0, 0). This is step 5.

Finally, we execute step 6 to compute the difference between u(α, αv) and u(0, 0), which

is the ambiguous unemployment. Of course, we can acquire the ambiguous unemployment

of workers by simulating u(0, αv) in step 5 and computing u(α, αv)−u(0, αv) in step 6. A

similar procedure yields ambiguous unemployment of vacancies. Section 5 follows these

six steps to uncover ambiguous unemployment in the United States.
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